Preventing alternans-induced spiral wave breakup in cardiac tissue: an ion-channel-based approach.
نویسندگان
چکیده
The detailed processes involved in spiral wave breakup, believed to be one major mechanism by which tachycardia evolves into fibrillation, are still poorly understood. This has rendered difficult the proper design of an efficient and practical control stimulus protocol to eliminate such events. In order to gain new insights into the underlying electrophysiological and dynamical mechanisms of breakup, we applied linear perturbation theory to a steadily rotating spiral wave in two spatial dimensions. The tissue was composed of cells modeled using the Fenton-Karma equations whose parameters were chosen to emphasize alternans as a primary mechanism for breakup. Along with one meandering mode, not just one but several unstable alternans modes were found with differing growth rates, frequencies, and spatial structures. As the conductance of the fast inward current was increased, the instability of the modes increased, consistent with increased meandering and propensity for spiral breakup in simulations. We also explored a promising new approach, based on the theory, for the design of an energy efficient electrical stimulus protocol to control spiral wave breakup. The novelty lies in addressing the problem directly at the ion channel level and taking advantage of the inherent two dimensional nature of the rotating wave. With the help of the eigenmode method, we were able to calculate the exact timing and amplitude of the stimulus, and locate it optimally to maximize efficiency. The analysis led to a special-case example that demonstrated that a single, properly timed stimulus can have a global effect, suppressing all growing alternans modes over the entire tissue, thus inhibiting spiral wave breakup.
منابع مشابه
Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study
The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of per...
متن کاملAlternans and spiral breakup in a human ventricular tissue model.
Ventricular fibrillation (VF) is one of the main causes of death in the Western world. According to one hypothesis, the chaotic excitation dynamics during VF are the result of dynamical instabilities in action potential duration (APD) the occurrence of which requires that the slope of the APD restitution curve exceeds 1. Other factors such as electrotonic coupling and cardiac memory also determ...
متن کاملMemory effects, transient growth, and wave breakup in a model of paced atrium.
The mechanisms underlying cardiac fibrillation have been investigated for over a century, but we are still finding surprising results that change our view of this phenomenon. The present study focuses on the transition from normal rhythm to spiral wave chaos associated with a gradual increase in the pacing rate. While some of our findings are consistent with existing experimental, numerical, an...
متن کاملT-Wave Alternans and Arrhythmogenesis in Cardiac Diseases
T-wave alternans, a manifestation of repolarization alternans at the cellular level, is associated with lethal cardiac arrhythmias and sudden cardiac death. At the cellular level, several mechanisms can produce repolarization alternans, including: 1) electrical restitution resulting from collective ion channel recovery, which usually occurs at fast heart rates but can also occur at normal heart...
متن کاملMechanism of Discordant Alternans in Spatially Homogeneous Tissue
abstract Discordant alternans, the phenomenon of separate cardiac tissue locations exhibiting action potential duration (APD) alternans of opposite phase, appears to be a potential mechanism for electrocardiographic T wave alternans, but its initiation mechanism is unknown. We studied behavior of one-and two-dimensional cardiac tissue spatially homogeneous in all respects, including APD restitu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 6 Pt 1 شماره
صفحات -
تاریخ انتشار 2004